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The dynamics of red blood cells �RBCs� in simple shear flow was studied using a theoretical approach based
on three variables: a shape parameter, the inclination angle �, and phase angle � of the membrane rotation. At
high shear rate and low viscosity contrast of internal fluid, RBCs exhibit tank-treading motion, where � rotates
with swinging oscillation of shape and �. At low shear rate, tumbling motion occurs and � rotates. In the
middle region between these two phases, it is found that synchronized rotation of � and � with integer ratios
of the frequencies occurs in addition to intermittent rotation. These dynamics are robust to the modification of
the potential of the RBC shape and membrane rotation. Our results agree well with recent experiments.
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I. INTRODUCTION

Soft deformable objects, such as liquid droplets, vesicles,
cells, and synthetic capsules exhibit a complex behavior un-
der flows. For example, in capillary flow, fluid vesicles �1�,
red blood cells �RBCs� �2–8�, and synthetic capsules �9� de-
form to parachute shapes, and RBCs also deform to slipper
shapes �4–7�. Shape transitions of fluid vesicles occur in
simple shear flow �10–12�. Membrane wrinkling appears for
fluid vesicles after inversion of an elongational flow �13,14�
and for synthetic capsules in simple shear flow �15,16�.
Among these soft objects, RBC have received a great deal of
attention since they are important for both fundamental re-
search and medical applications. In microcirculation, the de-
formation of RBCs reduces the flow resistance of microves-
sels. In patients with diseases such as diabetes mellitus and
sickle cell anemia, the RBCs have a reduced deformability
and often block the microvascular flow �2,17–20�.

In a simple shear flow with flow velocity v= �̇yex, fluid
vesicles and RBCs show a transition from a tank-treading
�TT� mode with a constant inclination angle � to a tumbling
�TB� mode with increasing viscosity of the internal fluid �in

�21–24� or membrane viscosity �mb �10,11�. This transition
is described well by the theory of Keller and Skalak �KS�
�21�, which assumes a fixed ellipsoidal vesicle shape. Ex-
perimentally, synthetic capsules and RBCs show the oscilla-
tion of their lengths and �, called swinging �SW� �15,25,26�,
during TT motion, and RBCs also transit from TB to TT with
increasing �̇ �26,27�. Recently, this dynamics was explained
by the KS theory with the addition of an energy barrier for
the TT rotation caused by the membrane shear elasticity
�26,28�. More recently, this transition was also obtained by
simulations �29,30�. However, the detailed dynamics has not
yet been investigated.

For fluid vesicles in high shear flow, shape transitions
�10–12� occur, and a swinging phase �24,31–34�, where the
shape and � oscillate around ��0, appears between the TT

and TB phases. This SW mode is also called trembling
�24,33,34� or vacillating breathing �32�; it is explained by the
KS theory extended to a deformable ellipsoidal vesicle �31�
and the perturbation theory for a quasispherical vesicle
�32–34�. Shape deformation plays an essential role in the SW
of fluid vesicles. The deformation is not necessary to explain
the SW of elastic capsules �15,25,26,28–30,35,36� but is re-
quired for quantitative analysis. In this paper, we extend the
theory in Ref. �28� to include the shape deformation of RBCs
and investigate the dynamics of deformable RBCs.

The internal fluid of RBCs behaves as a Newtonian fluid
since RBCs do not have a nucleus and other intracellular
organelles. The RBC membrane consists of a lipid bilayer
with an attached spectrin network as cytoskeleton. The lipid
bilayer is an area-incompressible fluid membrane. The shear
elasticity of the composite membrane is induced by the spec-
trin network. Under physiological conditions, an RBC has a
constant volume of V=94 �m3, surface area of S
=135 �m2, �in=0.01 Pa s, �mb�10−7–10−6 Ns /m, mem-
brane shear elasticity of �=6�10−6 N /m, and bending ri-
gidity of �=2�10−19 J �3,12,17,37,38�.

The models and results are presented with dimensionless
quantities �denoted by a superscript ��. The lengths and en-
ergies are normalized by R0=�S /4	 and �R0

2, respectively.
For RBCs, they are R0=3.3 �m and �R0

2=6.5�10−17 J.
There are two intrinsic time units: the shape relaxation time

=�0R0 /� by the shear elasticity � and the time of shear
flow 1 / �̇; the reduced shear rate is defined as �̇�= �̇
. The
relative viscosities are �in

� =�in /�0 and �mb
� =�mb /�0R0,

where �0 is the viscosity of the outside fluid. In typical ex-
perimental conditions, the Reynolds number is low, Re�1;
hence, the effects of the inertia are neglected.

In Sec. II, we describe the extended KS theory �28� for an
elastic capsule with a fixed ellipsoidal shape and the phase
behavior of the capsule. In Sec. III. we introduce the shape
equation for deformable RBCs and present the dynamics of
deformed RBCs. The dependence of the function shape of
the RBC free-energy potential is described in Sec. IV. Dis-
cussion and summary are given in Secs. V and VI, respec-
tively. The comparison with experimental results is presented
in Sec. V.*noguchi@issp.u-tokyo.ac.jp
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II. DYNAMICS OF ELASTIC CAPSULES WITH FIXED
SHAPE

A. Models

1. Keller-Skalak theory

Keller and Skalak �21� analytically derived the equation
of the motion of vesicles or capsules based on Jeffery’s
theory �39�. In the KS theory, the vesicles are assumed to
have a fixed ellipsoidal shape,

� x1

a1
	2

+ � x2

a2
	2

+ � x3

a3
	2

= 1, �1�

where ai are the semiaxes of the ellipsoid, and the coordinate
axes xi point along its principal directions. The x1 and x2
axes, with a1�a2, are on the vorticity �xy� plane and the x3
axis is in the vorticity �z� direction. The maximum lengths in
three directions are L1=2a1, L2=2a2, and L3=2a3. The ve-
locity field on the membrane is assumed to be

vm = um = �−
a1

a2
x2,

a2

a1
x1,0	 . �2�

The energy Wex supplied from the external fluid has to be
balanced with the energy dissipated in the vesicle, Wex=Din
+Dmb, where Din and Dmb are the energies dissipated inside
the vesicle and on the membrane, respectively. The motion
of the vesicle is derived from this energy balance. Then the
motion of the inclination angle � is given by

d�

dt
=

�̇

2

− 1 + f0f1 cos�2��� − f0 =

�̇

2

− 1 + B cos�2��� ,

�3�

B = f0� f1 +
f1

−1

1 + f2��in
� − 1� + f2f3�mb

�  , �4�

 = −
�̇ cos�2��

2f1
1 + f2��in
� − 1� + f2f3�mb

� �
. �5�

The membrane-viscosity term was derived by Tran-Son-Tay
et al. �17�. The factors appearing in Eqs. �3�–�5� are given by

f0 = 2/�a1/a2 + a2/a1� ,

f1 = 0.5�a1/a2 − a2/a1� ,

f2 = 0.5g��1
2 + �2

2� ,

f3 = 0.5EsR0/�f1
2V� ,

g = �
0

�

��1
2 + s�−3/2��2

2 + s�−3/2��3
2 + s�−1/2ds ,

�i =
ai

�a1a2a3�1/3 ,

Es =� ẽijẽijdS ,

ẽij = eij − 0.5�Pij ,

eij = 0.5PikPjl��uk
m/�xl + �ul

m/�xk� ,

� = Pij � ui
m/�xj ,

Pij = �ij − ninj ,

where Es is an integral over the membrane surface and n is
the normal vector of the surface.

For B�1, a stable fixed point �=0.5 arccos�1 /B� exists,
and TT motion occurs, while for B�1, there is no fixed
point, and the angle � periodically rotates �TB�. As �in

� or
�mb

� increases, the transition from TT to TB motion occurs,
where B decreases from B�1 to B�1. The membrane vis-
cosity �mb and the internal viscosity �in

� have a similar effect;
hence, an effective internal viscosity can be defined as �eff

�

=�in
� + f3�mb

� . The factor f3 in �eff
� depends on the vesicle

shape and can give different dynamics for deformable
vesicles, in particular, for shape transformations between
prolate and oblate vesicles �10,11�.

The KS theory quantitatively predicts the TT-TB transi-
tion with increasing �eff

� . However, it cannot explain the
TB-TT transition with increasing �̇. In the KS theory, vesicle
motion does not depend on �̇ except that the TT or TB rota-
tion velocity increases linearly with �̇.

2. KS Theory with an energy barrier

Skotheim and Secomb �28� extended the KS theory to
take into account an energy barrier during TT membrane
rotation. For RBCs and synthetic capsules with non-spherical
rest shape, their membranes are locally deformed during the
TT rotation. Fischer experimentally demonstrated that the
RBC membrane rotates back to the original position when
the shear flow is switched off �40�. To describe the energy
barrier, a phase angle � and free-energy potential F��� are
introduced; see inset of Fig. 1. The potential is periodic,
F��+n	�=F���, and �=0 at the rest shape. Thus, the mo-
tions of the inclination angle � and phase angle � are given
by

d�

�̇dt
=

1

2

− 1 + f0f1 cos�2��� −

f0d�

�̇dt
, �6�

d�

�̇dt
= −

�c0/�̇�V�� � F�/�� + cos�2��
2f1
1 + f2��in

� − 1� + f2f3�mb
� �

, �7�

where c0=3f2 /8	f1. The equations of the original KS theory
are recovered in the absence of barriers of the free energy F,
i.e., �F� /��=0, where =d� /dt is independent of �.

Skotheim and Secomb used a simple potential F0���
=E0 sin2��� and a reduced energy Ue= f2E0 /2f1��̇V
=E0

�c0 / �̇�V�. We employ the potential F0 in this section and
describe the dependence on the potential shape in Sec. IV.
Equations �6� and �7� are numerically integrated using the
fourth-order Runge-Kutta method. An oblate capsule with
L2 /L1=0.25 and L3 /L1=1 is used as a model RBC.
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B. Results

Figures 1–4 show the dynamics of elastic capsules with
fixed shapes. At low shear rate �̇ �large Ue�, the capsules
show TB motion, since the free-energy barrier locks the
phase angle at ��0. In TB, � rotates but � osculates; see the
trajectory at Ue=0.81 in Fig. 3. At higher �̇ �smaller Ue� and
low �in, TT motion occurs. In TT, � oscillates �swing�, and �
rotates instead of �; see the trajectory at Ue=0.76 in Fig. 3.
The oscillation of � or � in TB or TT occurs with the rota-
tion frequency f rot

� or f rot
� , respectively. Here, an angle change

of 	 is counted as one rotation. Skotheim and Secomb �28�
reported an intermittent phase between the TT and TB
phases, where both rotations of � and � occur. The � �TT�
rotation is intermittently interrupted by the ��TB� rotation
slightly above the maximum energy barrier Ue

tt of the TT
phase. However, we found that the phases of synchronized
rotation of � and � also exist in this middle range between
the TB and TT phases. An infinite number of synchronization
phases with integer ratios of f rot

� and f rot
� exist; see Fig. 2.

This type of synchronization is called the Devil’s staircase
�41�.

The trajectories of the synchronized rotations with
f rot

� : f rot
� =1:1 and 2:1 are shown in Fig. 3. The former has the

widest Ue range. The approach to synchronization is ex-
plained by the return map �n+1��n� at �=	 /2−n	 in Fig. 4.
The curve �n+1��n� shifts to the left with increasing Ue and
has two �stable and unstable� crossing points with the line
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potential F0=E0 sin2���. �a� Viscosity �eff

� dependence for the
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�n+1=�n at 0.778 23�Ue�0.787 22, where the capsules
approach the limit cycle with �n+1=�n. At slightly below or
above the synchronization region �0�0.77823−Ue�1 or 0
�Ue−0.78722�1�, intermittent rotation appears, like near
the TT and TB regions �28�; see the trajectory at Ue
=0.7782 in Fig. 3.

The qualitative behavior of capsules does not depend on
the aspect ratios L2 /L1 and L3 /L1. However, the ranges of
the synchronized rotations are narrower for more spherical
capsules, as shown in Fig. 1�b�. Thus, it would be difficult to
observe synchronized rotations in quasispherical capsules.
Note that the dynamics is independent of L3 /L1 at �eff

�

=�c
��B=1�.
A fluid vesicle has no membrane shear elasticity �Ue=0�

and shows no synchronization between � and � since the
potential does not depend on �; see Fig. 1�a�. At 0��eff

�

−�c
��1, intermittent � rotation also appears for the fluid

vesicle. The tumbling frequency is given by f rot
�

= �̇�1−B2 /2	���eff
� −�c

� in the KS theory �21�. A similar
frequency dependence on Ue is obtained in the extended KS
theory: f rot

� ��Ue−Ue
tt slightly above Ue

tt �28�.

III. DYNAMICS OF DEFORMABLE RBCS

A. Shape equation

Previously, we extended the KS theory to include the
shape deformation of fluid vesicles, on the basis of the per-
turbation theory �32,34,42� of quasispherical vesicles �31�. It
showed very good agreement with experimental data �24�.
Here, we have adapted it to RBC dynamics. The shape pa-
rameter �12= �L1−L2� / �L1+L2� does not increase monotoni-
cally for elongation because of RBC dimples. Therefore, the
shape parameter �13= �L1−L3� / �L1+L3� is employed, where
��13 /��12=2 for an oblate ellipsoid ��13=0�. The equation
of the shape evolution is given by

d�13

�̇dt
= �1 − � �13

�13
max	2�−

A0

�̇�

�F�

��13
+ A1 sin�2�� , �8�

where A0=45 /2	�32+23�in
� +16�mb

� �V� and A1=60 / �32
+23�in

� +16�mb
� �. Here, the terms of �mb

� are added in A0 and

A1 based on the theory in Refs. �33,34�. This revision im-
proves the �mb

� dependence of fluid vesicles in Ref. �31�; the
phase diagram for �mb

� becomes similar to that for �in
� .

The free energy F��13,�� is estimated by the simulation
of a model RBC with �=0,	 /2 elongated by mechanical
forces, where the RBC membrane is modeled as a triangular
network �12�. In the simulation, 578 vertices are connected
by a bond potential Ubond= �k1 /2��r−r0�2
1+ �k2 /2��r /r0
−1�2�, with �= ��3 /4�k1=6�10−6 N /m, �=2�10−19 J,
and k2=1. The area and volume of the RBC are kept constant
by harmonic potentials. Our simulation reproduces the force-
length curves of the optical-tweezer experiment �43� and
other simulations �38,44,45�; see Fig. 5 in Ref. �12�. The
effective force �F��13,�� /�� is estimated from these force-
length curves; see Fig. 5. The model RBC at �=	 /2 has 9
�10−18 J higher energy than at �=0 with �13=−0.1 in the
absence of external forces. This height of the energy barrier
agrees with the value E0=10−17 J in Ref. �28�, which was
estimated from Fischer’s experiments �40�. Abkarian et al.
�26� estimated the height as E0=�S�a1 /a2−a2 /a1�2 /2�3 to
7�10−10 �m2��� based on the velocity field of the KS
theory �Eq. �2��. However, it gives much higher barrier E0
�10−15 J for �=6�10−6 N /m or smaller shear modules
��10−8 N /m for E0=10−17 J. Since the KS velocity field
does not satisfy the local area conservation of membrane, it
may give more stress on the membrane than the area-
conserving velocity field �46�, and the barrier height may be
overestimated.

In this section, we employ the free-energy potential
F0��13,��=F1��13�+F2��13�sin2���. The dependence on
the potential function is discussed in Sec. IV. Instead of an
interpolation �10,11,31�, we used fit functions to obtain
smooth functions for the numerical calculations: the normal-
ized potentials F1

���13�=5�13
2 + �40 /3��13

3 + �230 /4��13
4

and F2
���13�=0.2+0.8�13; the shape parameter �12=0.56

+0.35�13−0.23�13
2 +0.034�13

3 ; the coefficients f2=0.6018
+0.064�13−0.19�13

2 −0.42�13
4 and f3=0.734+0.54�13

+0.91�13
2 +3.2�13

4 ; and �13
max=0.7. Equations �6�–�8� are nu-

merically integrated using the fourth-order Runge-Kutta
method.

In this model, the viscosity ratio of the membrane and
inner fluid and the reduced volume are fixed at �mb

� /�in
�

=3.1 and V�=V / �4	R0
3 /3�=0.64. Experimentally, the viscos-

ity �0 of outside fluid is typically varied and �mb and �in are
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fixed at physiological values. Thus, �in
� =1 corresponds to

�0=0.01 Pa s. The reduced shear rate �̇�=1 corresponds to
�̇=90 or 180 s−1 at �in

� =0.5 or 1, respectively.

B. Results

The phase diagram and rotation frequencies of the de-
formable RBC in simple flow are shown in Fig. 6. The shape
deformation does not qualitatively change the phase dia-
gram. The tumbling phase appears in the bottom of Fig. 6�a�
since �̇� is used for the vertical axis instead of Ue�1 / �̇�.

In the TT phase, the shape parameter �13 and � oscillate
with the frequency f rot

� ; see Figs. 7�b� and 8�a�. As �̇� in-
creases, the time-average ��13� increases, and the SW oscil-
lation amplitudes of �13 and � decrease; see Fig. 9�a�. The
peak-to-peak amplitude �amp is inversely proportional to �̇�

for both the deformable and fixed-shape RBCs. For the
fixed-shape RBCs, the mean angle ��� increases with in-
creasing �̇� and reaches the angle of the KS theory at Ue
=0��̇�→��. For the deformable RBCs, ��� has a maximum
and then decreases because of the elongation of the RBCs;
see Figs. 9�b�.

In the TT phase, �13 and � oscillate with a fixed phase
difference; see Fig. 8. The phase difference is calculated
from the time difference t�

max between the maximum values
of �13 and � and from t�

min between the minimum values. The
difference between t�

max /Ttt and t�
min /Ttt represents the asym-

metry of the oscillation functions. In a sinusoidal function,
t�
max= t�

min. It is found that �13 and � show in-phase oscillation
�t� /Ttt�0� at small �̇�, and the phase difference approaches
	 /4 with increasing �̇�. Walter et al. experimentally ob-
served a phase difference of 	 /4 for synthetic capsules; see
Fig. 7 in Ref. �15�. Our results agree with their experiments.

In the TB phase, ��� decreases and �amp increases with
increasing �̇�; see Fig. 10. When the energy barrier at � /	
=−0.5 is overcome at �̇tb

� , � begins to rotate. The average
��13� decreases since F0��13,�� has a minimum at �13�0
for ��0. In TB, there is no significant difference between
the deformable and fixed-shape RBCs.

IV. DEPENDENCE ON POTENTIAL FUNCTION

We compared the dynamics of RBCs with the fixed and
deformable shapes in the previous section. The fixation of
the RBC shape can be interpreted as the bending rigidity �
→� or F��13,��=k�13

2 +F���� with k→�. This difference
of the potential functions in �13 does not change the dynam-
ics greatly. In this section, we investigate the dependence on
the potential functions in �. For fixed-shape capsules, we
compare the dynamics with three potential functions: F0
=E0 sin2���, F4=E0 sin4���, and Fa=E0 sin2���; see Fig.
11�a�. The angle � is the rotational angle �=arctan�xi /yi�,
where ri= �xi ,yi ,zi� is the position of a tracer on the mem-
brane. The phase angle � is defined as �=arctan�xiL2 /yiL1�.
The angle � can be defined without assuming an ellipsoidal
shape. The potential Fa has the sharpest peak.

As the peak of potentials �F0 ,F4 ,Fa� sharpens, the transi-
tion shear rates �̇tb

� and �̇tt
� increase �Ue decreases� since the

maximum forces �F /�� increases at constant E0. Two limit
cycles of the synchronized rotations can coexist for F4 and
Fa, while no coexistence is observed for F0. The capsules
approach different limit cycles with increasing and decreas-
ing �̇�. For the synchronized rotations with f rot

� : f rot
� =1:1, a

steeper but continuous change appears in the f rot curve for F4
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than for F0, and a discrete change with hysteresis appears for
Fa; compare Figs. 2�a� with Figs. 11�b� and 11�c�.

The coexistence of two synchronized rotations occurs for
the deformable RBCs with the free energy Fa��13,��
=F1��13�+F2��13�sin2���. The shape parameter �13 and �
steeply change at �� �0.5	 during TT motion, as shown in
Fig. 12. The oscillations of �13 and � do not approach sinu-
soidal curves, unlike the case for F0; compare Figs. 8�c� and
12�b�. In the TT and TB phases, the averages and amplitudes
of the angles � and � do not show significant differences
between the potential shapes in � �F0, F4, and Fa� and in �13
�fixed or deformable shape�; see Figs. 9 and 10.

V. DISCUSSION

Let us compare our results with the experimental results
�26�. The TT-TB transition is observed at �̇�=0.01�0.04 for

�in
� =0.45 in Ref. �26�. It is in good agreement with our re-

sults, �̇tb
� =0.0158455 and �̇tt

� =0.0173455 with F0 and �̇tb
�

=0.0272 and �̇tt
� =0.028 with Fa. Abkarian et al. also reported

the dependences in the TT phase, f rot��̇�Ttt�1 / �̇�, and the
SW amplitude �amp�1 / �̇. We also obtained these depen-
dences for all types of potentials; see Figs. 7�a� and 9�c�.
Most of the dynamics in our calculations are qualitatively
independent of the potential shapes, and the quantitative dif-
ferences are smaller than the distribution widths of the ex-
perimental data. In the experiments, the transition shear rate
and the other quantities have wide distributions because of
the polydispersity of RBCs. RBCs become smaller and more
viscous with age �17,18�. The viscoelasticity of the RBC
membrane is changed by some diseases such as diabetes
mellitus �19�. Further experimental and simulation studies
are needed to tune up the RBC potential in our theoretical
model.

In experiments, it is difficult to distinguish the intermit-
tent rotations from transient rotations �26�. The intermittency
has not yet been obtained by numerical simulations �29,30�.
The synchronized rotations, in particular with f rot

� : f rot
� =1:1,

would be much easier to observe in experiments and simu-
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lations. Kessler et al. �29� argued that the intermittent phase
might be an artifact of the theory since they did not obtain it
in their simulations. In our study, however, the modifications
of the theory do not qualitatively change the phase diagram.
The Devil’s staircase is the general dynamics on a torus
�two-dimensional plane with periodic boundary condition�.
We believe that the intermittent and synchronized rotations
occur at higher �̇ than their simulated values.

Interestingly, for TT motion slightly above �̇tt
�, the angle �

oscillates crossing �=0; see Figs. 7�c�. Fluid vesicles also
show SW oscillation of the vesicle shape and � around �
�0 between the TT and TB phases by a different mecha-
nism, where the shrinkage of the vesicles at ��0 induces a
change in the dynamic mode from TB �B�1� to TT �B
�1� in the generalized KS theory �31�. Previously, we dis-
tinguished that in the SW oscillation of the elastic capsules, �
is always positive, and the shape deformation is negligibly
small, while in SW of fluid vesicles, � changes its sign and
the shape shows large deformation. However, we know now
that the condition for � is not always true. The clear differ-
ence is the dependence on �in

� or �mb
� . SW induced by the

shape deformation appears only in a narrow range of the
viscosity, whereas SW induced by the membrane shear elas-
ticity appears at a wide range of the viscosities with no lower
viscosity limit. In the future, it will be interesting to investi-
gate the coupling of different oscillation mechanisms in elas-
tic capsules.

VI. SUMMARY

In summary, we described the dynamics of RBCs in
simple shear flow using a simple theory. The phase diagram
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of RBCs is divided into three regions: tank-treading, tum-
bling, and intermediate regions. In the intermediate regions,
RBCs exhibit intermittent or synchronized rotations of the
inclination angle � and phase angle �. Synchronized rota-
tions, in particular with f rot

� : f rot
� =1:1, would be much easier

to experimentally observe than intermittent rotations. In the
TT �TB� phase, the shape and ���� oscillate with the fre-
quency of ���� rotation. The coexistence of two synchro-
nized rotations can appear when the potential function of �
has a sharp peak. The other dynamic properties are not sen-
sitive to the function shape of the free-energy potential. We

focused on the dynamics of RBCs in this paper, but the re-
sulting dynamics would be generally applicable to other elas-
tic capsules.
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